Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.301
Filtrar
1.
An Acad Bras Cienc ; 96(1): e20230188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597489

RESUMO

The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.


Assuntos
Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Lamiaceae , Animais , Aeromonas hydrophila , Antioxidantes/farmacologia , Hexanos , Imersão , Oxirredução , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
2.
Ann Clin Microbiol Antimicrob ; 23(1): 34, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637789

RESUMO

BACKGROUND: Chromobacterium is a genus of fourteen species with validly published names, most often found in soil and waters in tropical and subtropical regions around the world. The most well-known species of the genus, C. violaceum, occasionally causes clinically relevant infections; cases of soft tissue infections with septicemia and fatal outcomes have been described. CASE PRESENTATION: Here, we present a clinical case report of a 79-year-old man from Sweden with a soft-tissue infection and septicemia. The pathogen was identified as a strain of Chromobacterium species, but not C. violaceum. The patient was treated with clindamycin and ciprofloxacin and recovered well. CONCLUSIONS: This case report demonstrates the potential of Chromobacterium species as infectious agents in immunocompetent patients. It also indicates the existence of a novel species.


Assuntos
Infecções por Bactérias Gram-Negativas , Sepse , Masculino , Humanos , Idoso , Chromobacterium , Suécia , Sepse/diagnóstico , Sepse/tratamento farmacológico , Sepse/microbiologia , Ciprofloxacina/uso terapêutico , Clindamicina/uso terapêutico , Infecções por Bactérias Gram-Negativas/microbiologia
3.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633150

RESUMO

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Assuntos
Ciclídeos , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/metabolismo , Ciclídeos/metabolismo , Resistência à Doença , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Expressão Gênica
4.
Front Public Health ; 12: 1376513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601497

RESUMO

Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application.


Assuntos
Carbapenêmicos , Infecções por Bactérias Gram-Negativas , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Unidades de Terapia Intensiva
5.
Front Cell Infect Microbiol ; 14: 1346565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469346

RESUMO

Stenotrophomonas maltophilia are ubiquitous Gram-negative bacteria found in both natural and clinical environments. It is a remarkably adaptable species capable of thriving in various environments, thanks to the plasticity of its genome and a diverse array of genes that encode a wide range of functions. Among these functions, one notable trait is its remarkable ability to resist various antimicrobial agents, primarily through mechanisms that regulate the diffusion across cell membranes. We have investigated the Mla ABC transport system of S. maltophilia, which in other Gram-negative bacteria is known to transport phospholipids across the periplasm and is involved in maintaining outer membrane homeostasis. First, we structurally and functionally characterized the periplasmic substrate-binding protein MlaC, which determines the specificity of this system. The predicted structure of the S. maltophilia MlaC protein revealed a hydrophobic cavity of sufficient size to accommodate the phospholipids commonly found in this species. Moreover, recombinant MlaC produced heterologously demonstrated the ability to bind phospholipids. Gene knockout experiments in S. maltophilia K279a revealed that the Mla system is involved in baseline resistance to antimicrobial and antibiofilm agents, especially those with divalent-cation chelating activity. Co-culture experiments with Pseudomonas aeruginosa also showed a significant contribution of this system to the cooperation between both species in the formation of polymicrobial biofilms. As suggested for other Gram-negative pathogenic microorganisms, this system emerges as an appealing target for potential combined antimicrobial therapies.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/metabolismo , Bactérias Gram-Negativas , Biofilmes , Membrana Celular , Anti-Infecciosos/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia
6.
J Infect Public Health ; 17(5): 843-853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554590

RESUMO

BACKGROUND: Colistin is a viable option for multidrug resistant gram-negative bacteria emerged from inappropriate antibiotic use. Nonetheless, suboptimal colistin concentrations and nephrotoxicity risks hinder its clinical use. Thus, the aim of this study is to investigate clinical outcomes in correlation with pharmacokinetic differences and infection types in critically ill patients on intravenous colistin methanesulfornate sodium (CMS). METHODS: A systematic literature search of Embase, Google Scholars, and PubMed was performed to identify clinical trials evaluating pharmacokinetic parameters along with clinical outcomes of CMS treatment from inception to July 2023. The pooled analyses of clinical impact of CMS on nephrotoxicity, mortality, clinical cure, and colistin concentration at steady state (Css,avg) were performed. This study was registered in the PROSPERO (CRD 42023456120). RESULTS: Total of 695 critically ill patients from 17 studies were included. The mortality was substantially lower in clinically cured patients (OR 0.05; 95% CI 0.02 - 0.14), whereas the mortality rate was statistically insignificant between nephrotoxic and non-nephrotoxic patients. Inter-patient variability of pharmacokinetic parameters of CMS and colistin was observed in critically ill patients. The standard mean differences of Css,avg were statistically insignificant between clinically cure and clinically failure groups (standard mean difference (SMD) -0.25; 95% CI -0.69 - 0.19) and between nephrotoxic and non-nephrotoxic groups (SMD 0.67; 95% CI -0.27-1.61). The clinical cure rate is substantially lower in pneumonia patients (OR 0.09; 95% CI 0.01 - 0.56), and pharmacokinetic parameters pertaining to microbiological cure were different among strains. CONCLUSION: The mortality rate was substantially lower in clinically cured patients with CMS. However, no significant differences in Css,avg of colistin were examined to determine the impact of pharmacokinetic differences on clinical outcomes including mortality rate and nephrotoxicity risk. Nevertheless, the clinical cure rate is substantially lower in patients with respiratory infection than patients with urinary tract infection.


Assuntos
Infecções Bacterianas , Infecções por Bactérias Gram-Negativas , Humanos , Colistina/efeitos adversos , Estado Terminal/terapia , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Infecções Bacterianas/tratamento farmacológico , Bactérias , Mesilatos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia
7.
J Hosp Infect ; 143: 82-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38529781

RESUMO

BACKGROUND: Healthcare-associated infections (HAIs) are a major problem in intensive care units (ICUs). The hospital water environment is a potential reservoir for Gram-negative bacteria (GNB), and it has been shown that contaminated sinks contribute to the spread of GNB in outbreak and non-outbreak settings. This study aimed to investigate which sink interventions may reduce GNB infection and colonization rates in the ICU. METHODS: A database search (MEDLINE via PubMed, EMBASE via Ovid and ClinicalTrials.gov) was undertaken without restrictions on language or date of publication. Studies of any design were included if they described an intervention on the water fixtures in patient rooms, and presented data about HAI or colonization rates in non-outbreak settings. Acquisition (infection and/or colonization) rates of GNB and Pseudomonas aeruginosa were analysed as outcomes. RESULTS: In total, 4404 records were identified. Eleven articles were included in the final analysis. No randomized controlled trials were included in the analysis, and all studies were reported to have moderate to serious risk of bias. Removing sinks and applying filters on taps had a significant impact on GNB acquisition, but there was high heterogeneity among reported outcomes and sample size among the studies. CONCLUSION: Few studies have investigated the association of sinks in patient rooms with healthcare-associated acquisition of GNB in non-outbreak settings. Heterogeneity in study design made it impossible to generalize the results. Prospective trials are needed to further investigate whether removing sinks from patient rooms can reduce the endemic rate of HAIs in the ICU.


Assuntos
Infecção Hospitalar , Infecções por Bactérias Gram-Negativas , Humanos , Estudos Prospectivos , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Negativas , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/microbiologia , Unidades de Terapia Intensiva , Água
8.
PLoS One ; 19(3): e0297979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551906

RESUMO

Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing severe outbreaks at fish farms and is also a major global public health concern. This bacterium harbors many virulence genes. The current study was designed to evaluate the antidrug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and examining their effects on fish tissues and organs. A total of 960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR. We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in 95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9% in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%) in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phylogenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and 97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previous studies. The results of antimicrobial susceptibility testing showed that all isolates demonstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance was observed against cefotaxime. The results concluded that examined fish samples were markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of a potential health risk. The study emphasizes the responsible antimicrobial use in aquaculture and the urgent need for effective strategies to control the spread of virulence and antimicrobial resistance genes in A. hydrophila.


Assuntos
Aeromonas , Peixes-Gato , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/genética , Filogenia , Paquistão , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Peixes-Gato/genética , Aeromonas/genética , Infecções por Bactérias Gram-Negativas/microbiologia
9.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441470

RESUMO

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Lactococcus lactis , Animais , Humanos , Peixe-Zebra , Aeromonas hydrophila/genética , Lactococcus lactis/genética , Baço , Antibacterianos , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças dos Peixes/microbiologia
10.
Expert Opin Investig Drugs ; 33(4): 371-387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445383

RESUMO

INTRODUCTION: Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED: Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION: Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Negativas , Humanos , Antibacterianos/efeitos adversos , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
11.
Microbiol Spectr ; 12(3): e0295323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315029

RESUMO

Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE: Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.


Assuntos
Achromobacter denitrificans , Achromobacter , Fibrose Cística , Infecções por Bactérias Gram-Negativas , Humanos , Achromobacter/genética , Fibrose Cística/microbiologia , Prevalência , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Achromobacter denitrificans/genética , Fatores de Virulência/genética , Sideróforos
12.
Vet Microbiol ; 290: 109992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306769

RESUMO

Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of blaOXA in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm.


Assuntos
Brachyspira , Infecções por Bactérias Gram-Negativas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , 60595 , Galinhas/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Farmacorresistência Bacteriana/genética , Resistência beta-Lactâmica , Reino Unido , Diterpenos
14.
Antimicrob Resist Infect Control ; 13(1): 10, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273339

RESUMO

BACKGROUND: Catheter-associated urinary tract infections (CAUTIs) due to multidrug-resistant Gram-negative bacilli (GNB) is a common concern globally. Investigating the incidence of CAUTI and associated antibiotic resistance has paramount importance from the health care associated infections perspective. This study therefore assessed the incidence of CAUTIs due to GNB and the production of extended-spectrum beta-lactamase (ESBL) and carbapenemase among inpatients in specialized hospitals of Northwest, Ethiopia. METHODS: A total of 363 patients with indwelling urinary catheters who were admitted in the hospital for > 48 h were consecutively enrolled and followed from 3 to 18 days. Data were collected through interviewing and review of medical records. Patients who developed at least one of the following: fever (> 38 OC), suprapubic tenderness, or costovertebral angle pain, coupled with a GNB positive urine culture of ≥ 103 CFU/mL with no more than two bacterial species were defined as CAUTI. The ESBL and carbapenemase production were detected and identified by chromogenic medium. Logistic regression analysis was done to identify associated factors. RESULTS: From 363 patients followed, the incidence rate of CAUTI was 27.8 per 1000 catheter days. Catheterization for ≥ 8 days (AOR = 10.6, 95%CI:1.8-62.1) and hospitalization for > 10 days (AOR = 8.1, 95%CI: 2.4-27.2) were the factors significantly associated with CAUTIs. E. coli (n = 18, 34.6%), Proteus species (n = 7, 13.5%), and P. aeruginosa (n = 6, 11.5%) were the most frequent GNB. Isolates revealed high rates of resistance to amoxicillin-clavulanic acid (100%), cefazolin (n = 51, 98%), ceftazidime (n = 47, 90%) and cefotaxime (n = 46, 88%). Most of the GNB isolates (86.5%) were multidrug-resistant. Overall, 19.2% and 5.8% of GNB isolates were ESBL and carbapenemase producers, respectively. CONCLUSIONS: Incidence of CAUTI with Gram-negative bacilli is high. As most of the GNB isolates are MDR and showed a super high rate of resistance to amoxicillin-clavulanic and third-generation cephalosporins, empirical treatment with these substances is virtually ineffective in patients with suspected GNB infection in Ethiopia. The expression of ESBL and carbapenemase among GNB isolates is also a concern. Therefore, improved infection prevention and control measures, careful use of catheters and third generation of cephalosporins are needed to improve patient outcomes and reduce the burden of CAUTIs and the spreading of antimicrobial resistance.


Assuntos
Proteínas de Bactérias , Infecções por Bactérias Gram-Negativas , Infecções Urinárias , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Incidência , Etiópia/epidemiologia , Escherichia coli/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , beta-Lactamases/metabolismo , Infecções Urinárias/microbiologia , Cefalosporinas/farmacologia , Hospitais , Cateteres
15.
Int Immunopharmacol ; 128: 111478, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183913

RESUMO

Severe soft tissue infections caused by Aeromonas dhakensis, such as necrotizing fasciitis or cellulitis, are prevalent in southern Taiwan and around the world. However, the mechanism by which A. dhakensis causes tissue damage remains unclear. Here, we found that the haemolysin Ahh1, which is the major virulence factor of A. dhakensis, causes cellular damage and activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome signalling pathway. Deletion of ahh1 significantly downregulated caspase-1, the proinflammatory cytokine interleukin 1ß (IL-1ß) and gasdermin D (GSDMD) and further decreased the damage caused by A. dhakensis in THP-1 cells. In addition, we found that knockdown of the NLRP3 inflammasome confers resistance to A. dhakensis infection in both THP-1 NLRP3-/- cells and C57BL/6 NLRP3-/- mice. In addition, we demonstrated that severe soft-tissue infections treated with antibiotics combined with a neutralizing antibody targeting IL-1ß significantly increased the survival rate and alleviated the degree of tissue damage in model mice compared control mice. These findings show that antibiotics combined with therapies targeting IL-1ß are potential strategies to treat severe tissue infections caused by toxin-producing bacteria.


Assuntos
Aeromonas , Infecções por Bactérias Gram-Negativas , Proteínas Hemolisinas , Inflamassomos , Infecções dos Tecidos Moles , Animais , Camundongos , Aeromonas/metabolismo , Antibacterianos , Caspase 1/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções dos Tecidos Moles/imunologia , Infecções dos Tecidos Moles/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia
16.
BMC Infect Dis ; 24(1): 45, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172766

RESUMO

BACKGROUND: This study aimed to assess and compare procalcitonin (PCT) and C-reactive protein (CRP) levels between COVID-19 and non-COVID-19 sepsis patients. Additionally, we evaluated the diagnostic efficiency of PCT and CRP in distinguishing between Gram-positive (GP) and Gram-negative (GN) bacterial infections. Moreover, we explored the associations of PCT with specific pathogens in this context. METHODS: The study included 121 consecutive sepsis patients who underwent blood culture testing during the COVID-19 epidemic. PCT and CRP were measured, and reverse transcriptase-polymerase chain reaction (RT-PCR) was employed for the detection of COVID-19 nucleic acid. The Mann-Whitney U-test was used to compare PCT and CRP between the COVID-19 and non-COVID-19 groups. Receiver operating characteristic (ROC) curves were generated to compare PCT and CRP levels in the GN group versus the GP group for assessing the diagnostic efficiency. The kruskal-Wallis H test was applied to assess the impact of specific pathogen groups on PCT concentrations. RESULTS: A total of 121 sepsis patients were categorized into a COVID-19 group (n = 25) and a non-COVID-19 group (n = 96). No significant differences in age and gender were observed between the COVID-19 and non-COVID-19 groups. The comparison of biomarkers between these groups showed no statistically significant differences. The optimal cut-off values for PCT and CRP in differentiating between GP and GN infections were 1.03 ng/mL and 34.02 mg/L, respectively. The area under the ROC curve was 0.689 (95% confidence interval (CI) 0.591-0.786) for PCT and 0.611 (95% CI 0.505-0.717) for CRP. The diagnostic accuracy was 69.42% for PCT and 58.69% for CRP. The study found a significant difference in PCT levels among specific groups of pathogens (P < 0.001), with the highest levels observed in Escherichia coli infections. The frequency of Staphylococcus spp. positive results was significantly higher (36.0%) in COVID-19 compared to non-COVID-19 sepsis patients (P = 0.047). CONCLUSION: Sepsis patients with COVID-19 revealed a significantly higher culture positivity for staphylococcus spp. than the non-COVID-19 group. Both PCT and CRP showed moderate diagnostic efficiency in differentiating between GP and GN bacterial infections. PCT showed potential utility in identifying E. coli infections compared to other pathogens.


Assuntos
COVID-19 , Infecções por Escherichia coli , Infecções por Bactérias Gram-Negativas , Sepse , Humanos , Proteína C-Reativa/análise , Pró-Calcitonina , Escherichia coli/metabolismo , Calcitonina , Estudos Retrospectivos , COVID-19/diagnóstico , Sepse/microbiologia , Biomarcadores , Curva ROC , Infecções por Bactérias Gram-Negativas/microbiologia , Staphylococcus , Teste para COVID-19
17.
Ann Pharmacother ; 58(1): 21-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37125743

RESUMO

BACKGROUND: Stenotrophomonas maltophilia is a multidrug-resistant organism with limited antibiotic treatment options. Minocycline and doxycycline may be appropriate, but clinical data are limited. OBJECTIVE: To compare tetracyclines (minocycline and doxycycline [TCN]) with standard of care, sulfamethoxazole-trimethoprim (TMP-SMZ), in S. maltophilia pneumonia treatment. METHODS: This retrospective, 2-center study evaluated patients treated for S. maltophilia pneumonia with TCN or TMP-SMZ for clinical success, defined as resolution of leukocytosis, fever, and tachypnea. Patients were classified as treatment with TCN or TMP-SMZ based on definitive agent used for ≥50% of the treatment course and ≥4 days. Inclusion criteria were age ≥18 years, S. maltophilia confirmed on respiratory culture from January 2013 to November 2020, and appropriate definitive antibiotic dosing. Pregnancy, incarceration, S. maltophilia-resistant or intermediate to definitive therapy, and combination therapy for treatment of S. maltophilia pneumonia were exclusion criteria. Secondary outcomes were microbiologic success and recurrence or reinfection within 30 days requiring treatment. RESULTS: A total of 80 patients were included (21 TCN [15 minocycline, 6 doxycycline], 59 TMP-SMZ). There was no difference in clinical success (28.6% vs 25.4%; P = 0.994), microbiologic success (n = 28, 55.6% vs 66.4%; P = 0.677), or recurrence or reinfection (n = 24, 66.7% vs 26.7%; P = 0.092) between TCN and TMP-SMZ, respectively. CONCLUSION AND RELEVANCE: Clinical and microbiologic success rates were similar in patients treated with TCN compared with TMP-SMZ for S. maltophilia pneumonia. These data suggest minocycline and doxycycline may be options to treat S. maltophilia pneumonia, but conclusive clinical data continue to be lacking.


Assuntos
Infecções por Bactérias Gram-Negativas , Pneumonia , Stenotrophomonas maltophilia , Humanos , Adolescente , Minociclina/uso terapêutico , Doxiciclina/uso terapêutico , Estudos Retrospectivos , Reinfecção/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Antibacterianos/uso terapêutico , Pneumonia/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Testes de Sensibilidade Microbiana
18.
J Hosp Infect ; 143: 160-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939885

RESUMO

BACKGROUND: Bacterial infection ranks amongst the most common causes of morbidity and mortality in patients undergoing allogeneic haematopoietic stem cell transplantation (alloHSCT). Although ciprofloxacin (CIP) prophylaxis is recommended, information on serum levels and clinical course is lacking. AIM: To investigate relationships between CIP level and failure of prophylaxis, particularly in terms of whether different pharmacokinetic (PK) indices [area under the concentration-time curve (AUC0-24h) vs single time samples] correlate differently with the outcome. METHODS: This prospective observational monocentric study was conducted at a 1500-bed teaching hospital (March 2018-March 2019), including 63 adult patients with alloHSCT receiving CIP prophylaxis. Blood samples were drawn at three sampling times (1, 6 and 12 h post-administration), twice per week, and measured via high performance liquid chromatography. The onset of febrile episodes (FEBs) indicated suspected failure of CIP prophylaxis. Positive blood cultures [bloodstream infection (BSI)] indicated confirmed failure of prophylaxis. FINDINGS: Seven of 63 patients died without significant differences in their average CIP levels compared with survivors, with patients experiencing FEBs (54/63) displaying a 13% [95% confidence interval (CI) 4-22%] lower probability of survival. In total, 225 sets of three values (triplets) were obtained from 58 primary CIP episodes. Triplets preceding BSI with Gram-negative bacteria (GNB-BSI) showed lower AUC0-24h on average, but similar single time sample indices. An AUC0-24h of ≤21.61 mgh/L resulted in four-fold higher odds of GNB-BSI (adjusted odds ratio 3.96, 95% CI 1.21-13.00). These results were independent of the administration route, patient demographics or sampling protocol deviations, indicating reduced CIP exposure upon GNB-BSI events. CONCLUSION: Monitoring CIP levels, using multiple sampling times, may be useful to reduce alloHSCT-associated bacterial infections. Further analysis is needed to investigate causality.


Assuntos
Bacteriemia , Infecções Bacterianas , Infecções por Bactérias Gram-Negativas , Transplante de Células-Tronco Hematopoéticas , Sepse , Adulto , Humanos , Ciprofloxacina/uso terapêutico , Estudos Prospectivos , Monitoramento de Medicamentos , Infecções Bacterianas/tratamento farmacológico , Transplante de Células-Tronco , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sepse/microbiologia , Bacteriemia/microbiologia , Estudos Retrospectivos , Infecções por Bactérias Gram-Negativas/microbiologia
19.
Microb Pathog ; 186: 106461, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048837

RESUMO

The global ornamental fish trade carries important risk factors for spreading pathogens between different countries and regions, not only for ornamental fish but also for cultured fish and even other animal species. In the current study, we reported the capacity of Aeromonas veronii and A. hydrophila isolated from ornamental fish to experimentally infect the reared Amazonian fish Colossoma macropomum. For this, those bacteria were identified, and a primary characterization was performed. Fish were inoculated with 0.1 mL of increasing concentrations of A. hydrophila or A. veronii (C1 = 1 × 102; C2 = 1.8 × 104; C3 = 2.1 × 106; C4 = 2.4 × 108 bacterial cells per mL) in the coelomic cavity. In the control group, fish received the same volume of sterile saline solution (0.9 %). Fish presented petechiae, skin suffusions, and mortality rates up to 100 % according to the inoculum concentration. Histopathologically, fish presented necrosis with karyolysis, loss of the cytoplasmic delimitation of cells of the renal tubules and hepatocytes, hemorrhage, cellular edema, and the presence of bacterial cells. The LD50-96h of A. veronii on C. macropomum was estimated at 2.4 × 106 CFU mL-1 and of A. hydrophila at 1.408 × 105 CFU mL-1. The results demonstrated that it is possible that Aeromonas species isolated from ornamental fish affect C. macropomum, causing similar clinical signs and lesions. This shows the importance of promoting risk control measures worldwide regarding the trade of ornamental fish.


Assuntos
Aeromonas , Caraciformes , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii , Dose Letal Mediana , Fatores de Risco , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia
20.
J Fish Dis ; 47(2): e13885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947250

RESUMO

Here, we provide evidence that the freshwater parasitic copepod, Salmincola californiensis, acts as a vector for Aeromonas salmonicida. While investigating the effects of S. californiensis on Chinoook salmon (Oncorhynchus tshawytscha), we tangentially observed that fish infected with the copepod developed furunculosis, caused by A. salmonicida. This occurred despite being reared in pathogen-free well water in a research facility with no prior history of spontaneous infection. We further investigated the possibility of S. californiensis to serve as a vector for the bacterium via detection of fluorescently labelled A. salmonicida inside the egg sacs from copepods in which the fish hosts were experimentally infected with GFP-A449 A. salmonicida. We then evaluated copepod egg sacs that were collected from adult Chinook salmon from a freshwater hatchery with A. salmonicida infections confirmed by either culture or PCR. The bacterium was cultured on tryptic soy agar plates from 75% of the egg sacs, and 61% were positive by PCR. These three separate experiments indicate an alternative tactic of transmission in addition to direct transmission of A. salmonicida in captivity. The copepod may play an important role in transmission of the bacterium when fish are more dispersed, such as in the wild.


Assuntos
Aeromonas salmonicida , Aeromonas , Copépodes , Doenças dos Peixes , Furunculose , Infecções por Bactérias Gram-Negativas , Salmonidae , Animais , Furunculose/microbiologia , Doenças dos Peixes/microbiologia , Salmão/microbiologia , Água Doce , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...